

TomTom LINK.connect integration example
Quick start guide how to install and configure the TomTom LINK.connect integration example

Table of contents
TomTom LINK.connect integration example ... 1

Introduction ... 3

System requirements .. 4

On the server side ... 4

Smartphone ... 4

LINK device .. 4

Installation ... 5

Smartphone ... 5

Server ... 5

Using the integration example .. 8

Client‐Server communication described in detail ... 9

Introduction
This document describes the installation and configuration of the TomTom LINK.connect integration
example. For further information regarding TomTom WEBFLEET.connect and TomTom LINK.connect,
please refer to the following reference guides available on business.tomtom.com/fleet-
management/integration/resources/

System requirements
In order to execute this integration example, the following requirements need to be fulfilled.

On the server side
 PHP 5 or higher.

 Internet access to WEBFLEET.connect. The server itself does not need to be reachable from the
internet.

Smartphone
 Android based (2.3.3 or higher).

 Bluetooth support.

LINK device
 LINK 300/310/510 with a firmware that supports the LINK.connect feature.

Installation

Smartphone
1. Make sure, applications from other sources than “Google Play” can be installed.

For this open Settings, go to Application Settings and enable Unknown Sources.

2. Install “btdemo.client-debug.apk” on the Android smartphone.

You can do this for example by mailing it to the e-mail account of your smartphone or by copying
it onto the SD card.

3. Start the App.

A Bluetooth search for available LINK devices starts. Make sure, your LINK device is within
Bluetooth distance, which is usually 10 meters.

4. If multiple devices were found, select your Bluetooth device from the list. If only one LINK device
was found, it will be chosen automatically.

5. The App will now show the following information.

 Status Connected to LINK <Serial number of LINK device>
 Address: <Bluetooth address of LINK device>
 IMEI <IMEI of the smartphone>
 BT address <Bluetooth address of the smartphone>
 BT name <Bluetooth “friendly name” of the smartphone>

You will need this information to configure the server part.

6. If you want to connect to another LINK device, tap Menu and Discover LINK device to start a
new Bluetooth search.

Server
1. Determine the objectuid of the LINK device.

You can do this for example by executing the following WEBFLEET.connect request.
https://csv.business.tomtom.com/extern?lang=en&account=<account>&username=<usernam
e>&password=<password>&action=showObjectReportExtern

<account>: your WEBFLEET account name
<username>: your WEBFLEET.connect username
<password>: your WEBFLEET.connect password

2. Configure the LINK device to allow Bluetooth communication with the smartphone:

a. Fetch the list of configured Bluetooth peers for the LINK device to make sure, the smartphone
is not yet configured and to get the highest configid.
https://csv.business.tomtom.com/extern?lang=en&account=<account>&username=<user
name>&password=<password>&action=getRemoteAuxDeviceConfig&objectuid=<objectuid>

<objectuid>: The object UID of the LINK device from the object-report above.

b. If the smartphone is not yet configured, add it to the list of allowed peers:
https://csv.business.tomtom.com/extern?lang=en&account=<account>&username=<user
name>&password=<password>&action=configureRemoteAuxDeviceConfig&objectuid=<obje
ctuid>&configid=<configid>&deviceid=<bt-address>&pin=<pin>

<configid>: If no Bluetooth peers are configured for your LINK device, use 0 (zero).
Otherwise use the highest configid as returned in the getRemoteAuxDeviceConfig and
increase its value by 1.
<bt-address>: The Bluetooth address of the smartphone.
<pin>: The Bluetooth PIN that should be requested by the LINK device when

pairing to the smartphone for the first time. Use a four digit number of your choice.

The smartphone should now be allowed to connect to the LINK device. To check this, execute
the getRemoteAuxDeviceConfig again.

3. Determine the driverno of your driver.
https://csv.business.tomtom.com/extern?lang=en&account=<account>&username=<usernam
e>&password=<password>&action=showDriverReportExtern

You will need the driver number when editing “config.php” (see below).

4. Unpack btdemo.server.zip on your server into a folder of your choice.

5. Change into the directoy btdemo.server.

6. Open config.php in a text editor and change the following settings as needed:

a. Enter your WEBFLEET.connect credentials (account, username, password).

b. Configure a HTTP proxy if required.

c. Within $config[“drivers”] enter the IMEI number of your smartphone and the driver number.
The smartphone shall be assigned for example to:

$config[“drivers”] = array(“1234567890” => “01”);

Note: In above example 1234567890 represents the IMEI and 01 represents the driver
number.

d. Save the file.

7. Start the daemon by executing server.php at the command line of your server.

Note: The server part is a console based PHP application. Therefore it is not intended to be
installed into a webserver's htdocs directory. Instead, unpack the ZIP file into a folder of your
choice and start the application by executing server.php in a shell/command line. For example:

Windows (see http://www.php.net/manual/en/install.windows.commandline.php)

C:\PHP5\php.exe -f server.php

Linux (see “man php”)

php server.php

8. The program should output some logging information similar to this:

[2012-11-05 12:22:11] connecting to https://csv.business.tomtom.com/extern
[2012-11-05 12:22:11] create message queue if needed
[2012-11-05 12:22:11] created message queue
[2012-11-05 12:22:11] start server loop, interval: 10 seconds, press <CTRL><C> to
stop
[2012-11-05 12:22:11] fetched 0 messages

If you see any errors, verify the following:

a. You have entered the correct login credentials in config.php.

b. The user is allowed to use WEBFLEET.connect. You can configure this in the WEBFLEET user
management.

1. In WEBFLEET go to the main menu and click More.

2. Select Users from the list.

3. Select a user and click Edit.

4. Select the User data tab, find Profile settings and click Advanced.

5. Select the System tab, find WEBFLEET.connect and select Access to interface
WEBFLEET.connect.

c. Your server has internet access to WEBFLEET.connect.

d. Your PHP installation has SSL support, which is required for HTTPS connections.

On Linux you have to install the package php5-openssl. The package name may vary on
your distribution.

For Windows read http://php.net/manual/en/openssl.installation.php

Using the integration example

When you have successfully completed all installation steps you can tap the button Assign me to LINK
within the Android app. You should see a dialogue Sending request to LINK. After this dialogue
disappears, the Status label should be set to Submitted request to LINK, waiting for server
response. After a few seconds you should see some lines in the server console, similar to the following:

[2012-11-05 15:04:07] try to assign driverno <no> to objectuid <uid>

[2012-11-05 15:04:07] assign driver <no> to object <uid>

[2012-11-05 15:04:07] sending AUX data to objectuid <uid>, device: <address>, payload:
successfully assigned as driver no: <no>

The server now sends an acknowledge message back to the LINK device. On the smartphone the status
text should be updated to Got server response. successfully assigned as driver no: <no>.

If you tap the button again without un-assigning the driver before you should see the status text driver
<no> already assigned.

Client-Server communication described in detail

1. The Android smartphone sends data to the LINK device using a Bluetooth RFCOMM channel.

2. The LINK device forwards the received data to the WEBFLEET servers using GPRS. The payload of the
smartphone is not interpreted by WEBFLEET - neither by the LINK nor by the WEBFLEET servers. It's
passed unmodified to the message queues of WEBFLEET.connect.

3. The PHP server regularly fetches new messages from WEBFLEET.connect using
popQueueMessagesExtern. If a message contains matching payload, it's parsed by the PHP server to
determine the IMEI of the smartphone. If there's a driver number assigned to the IMEI in config.php,
the server executes the action assignDriverToVehicle to assign this driver to the LINK device the
message came from.

After that, the server executes the action sendAuxDeviceData to notify the smartphone about the driver
assignment. The server encodes the payload using Base64.

4. The WEBFLEET.connect servers pass the received payload back to the LINK device.

5. The Android smartphone receives the payload using a Bluetooth RFCOMM channel and shows it on the
screen.

